danielljeon.github.io

Digital Systems


Table of Contents

1 Boolean Algebra Laws

1.1 Operations

1.2 Order of Operations

  1. Brackets
  2. NOT
  3. AND
  4. OR

1.3 Equality Laws and Theorems

Law/Theorem
Identity $$X \cdot 1 = X$$ $$X + 0 = X$$
Annulment $$X \cdot 0 = 0$$ $$X + 1 = 1$$
Complement $$X \bar{X} = 0$$ $$X + \bar{X} = 1$$
Commutative $$X Y = Y X$$ $$X + Y = Y + X$$
Idempotent $$\bar{\bar{X}} = X X = X$$ $$X + X = X$$
Associative $$\left( X Y \right) Z = X \left( Y Z \right)$$ $$\left( X + Y \right) + Z = X + \left( Y + Z \right)$$
Distributive $$X \left( Y + Z \right) = XY + XZ$$ $$X + YZ = \left( X + Y \right) \left( X + Z \right)$$
Unity $$X Y + \bar{X} Y = Y$$ $$\left( X + Y \right) + \left( \bar{X} + Y \right) = Y$$
Absorption $$X + X Y = X$$ $$X \left( X + Y \right) = X$$
Absorption $$X + \bar{X} Y = X + Y$$ $$X \left( \bar{X} + Y \right) = XY$$
DeMorgan’s $$\overline{ \left( X Y \right) } = \bar{X} + \bar{Y}$$ $$\bar{ \left( X + Y \right) } = \bar{X} \bar{Y}$$
Consensus $$XY + YZ + \bar{X} Z = XY + \bar{X} Z$$
XOR $$X \oplus Y = \bar{X} \oplus \bar{Y} = \overline{ \left( \bar{X} \oplus Y \right) } = \overline{ \left( X \oplus \bar{Y} \right) }$$ $$\overline{ \left( X \oplus Y \right) } = \overline{ \left( \bar{X} \oplus \bar{Y} \right) } = \bar{X} \oplus Y = X \oplus \bar{Y} $$